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An Object-Oriented preprocessor fit for C++

E.D.Willink and V.B.Muchnick

Abstract: C++ retains the ANSI C preprocessor, although its limitations have been widely
recognised. We describe FOG, a meta-compiler for a super-set of C++, that provides
replacement preprocessing and introduces static meta-programming, while preserving the spirit
of C++. We show how implementation of preprocessor functionality in an Object-Oriented
style eliminates unnecessary replication from practical C++ programs, and supports recent
Object-Oriented Programming developments to a much greater extent than existing tools.

1 Introduction

Cpp, the C preprocessor, has always been an essential
accompaniment for the C language. Apart from some
minor rationalisation for the ANSI C standard [1], Cpp has
survived unchanged as an important part of C++ [2].
Stroustrup, in [3], identifies elimination of the
preprocessor as a major goal for C++, devoting the final
chapter to a discussion of its weaknesses, and identifying
some remedies that C++ provides. In the final paragraph,
Stroustrup writes: “I’d like to see Cpp abolished. However
the only realistic and responsible way of doing that is first
to make it redundant, ...”. Alternative preprocessors such
as m4 can be used for C++, but they also operate
independently of the underlying language.

A preprocessor supports reconfiguration of source text
at compile time using techniques such as file inclusion,
conditional compilation and text replacement. Cheatham
[4] identified three kinds of macro replacements:

• Text macros (text replaced by text - as exemplified by
Cpp macros)
• Computational macros (text replaced by the result of a
computation - as exemplified by inline functions and
templates)
• Syntax macros (text replaced by the syntax tree
representing a linguistically consistent construct)

The Flexible Object Generator (FOG) renders Cpp
redundant, introducing syntax macros that integrate with
C++ and solve the problems associated with text macros.
Where Cpp performs lexical manipulation without regard
to context, FOG provides extensive meta-level facilities
and has a full understanding of C++ declarations.

Programmers exploit whatever tools are available to
reuse ideas and avoid repetition: subroutines and classes

can encapsulate some forms of reusable functionality;
templates, particularly when used imaginatively, can
provide reusable solutions to many more problems [5].
However when a problem of reuse is, or is perceived to be,
insoluble within the programming language, programmers
must resort to extra-lingual approaches. Lexical pasting
with the preprocessor is inelegant and error prone, but to
be preferred over abandoning reuse and replicating code.

Use of simple patterns [6] or idioms [7] leads to very
predictable coding sequences. Many of these cannot be
captured by a single C++ construct and so paradoxically
C++ programs often use the preprocessor more than their
C predecessors. Even with the assistance of the
preprocessor, it is difficult to represent patterns that cut
across multiple classes, and so the pattern used for design
is lost from the implementation [8].

In this paper we show how a relatively simple subset of
the FOG meta-level facilities may be used for practical
applications without requiring an understanding of the
underlying meta-concepts. Space does not permit more
than a hint of how further use of the meta-level concepts
can support weaving and Aspect-Oriented Programming
[9]. A description of the meta-concepts may be found in
[10], and an AOP example in [11].

We start by showing how the basic facilities of Cpp are
replaced, using very simple examples, that are gradually
reworked as more powerful facilities are described and
exploited. We then examine a more typical example,
before reviewing related work and relevance to other
languages.

2 Traditional Preprocessing

2.1 Lexical substitution
Lexical substitution enables common definitions to be
shared, given sensible names, and factored out if
alternative definitions are needed in different contexts.
When used responsibly, this leads to a considerable
improvement in code quality, and is one of the main
reasons for the widespread use of the preprocessor.
However it is very easy for unfortunate substitutions to
occur, and the presence of all names from all header files
in a single name space is a source of many problems.
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C++ has removed the need for many substitutions by the
introduction of initialised consts and scoped
enumerations. However, even where these are appropriate,
the need for a non-integral type may defeat C++
enhancements.

Problems with Cpp substitution stem from the single
namespace and from forceful substitution irrespective of
context. Resolution of the namespace problem in FOG will
be dealt with later. The problem of over-enthusiastic
substitution is resolved by changing to a policy of
substitution by invitation, rather than substitution by
imposition. In FOG, instantiation  of the definition of
NAME is invited by $NAME, with the fallback of ${NAME}
when subsequent characters could cause an unwanted
meaning. The increased safety incurs the cost of the trigger
characters to invite the substitution. These characters are
not too out of place in a cryptic language such as C. The
syntax should be familiar to Unix shell or make
programmers.

2.2 Name concatenation

Name concatenation is useful for generating a new name
derived from some stem. Thus an implementation of the
NullObject pattern [12] may automatically define a Null
class derived from its AbstractObject by suffixing Null to
the class name of the AbstractObject.
class AbstractObjectNull

: public AbstractObject
{ /*...*/ };

This can be realised directly in FOG, where unseparated
identifiers and literals (numbers, strings and characters) are
concatenated1.
class ${ABSTRACTOBJECT}Null

: public $ABSTRACTOBJECT
{ /*...*/ };

Cpp provides the ## concatenation operator that can only
be used within a macro:
#define NULLOBJECT_INTERFACE(ABSTRACTOBJECT) \
  class ABSTRACTOBJECT ## Null \

  : public ABSTRACTOBJECT { /*...*/ };

2.3 String conversion

It is sometimes necessary, particularly for diagnostic
purposes, to use a name as both an identifier and a string.
const char *Class::class_name() const

{ return "Class"; }

This may be expressed directly in FOG, exploiting
concatenation of an empty string to perform a lexical cast,
since the result of a concatenation is of the same kind as
the first contribution.
const char *${CLASS}::class_name() const

{ return ""$CLASS; }

Cpp provides the # operator for use within macros.
#define CLASS_NAME_IMPLEMENTATION(CLASS) \
   const char *CLASS::class_name() const \

  { return # CLASS; }

2.4 Text replacement

The preprocessor #define directive is used to define
object-like macros
#define PI 3.14159

and function-like macros
#define max(a,b) ((a) > (b) ? (a) : (b))

supporting usage as

1  Obscure syntax incompatibilities requiring spaces in extern "C" and around
and are described in [13] .

a = max(sin(2*PI*f),0.5)

The replacement text is an arbitrary sequence of
preprocessor tokens that are substituted without regard to
context. Errors, particularly in nested definitions, are
difficult to diagnose, because substitution occurs before
any language interpretation is applied; few compilers or
debuggers support tracing back to the source once
substitution has occurred. Long definitions require the use
of backslashed continuation lines, which are inconvenient
and unreliable to edit or read. Readability is further
impaired by the need to use parentheses to guard against
the possibility of accidental association problems.

FOG provides a meta-level where conventional run-time
concepts can be used at (meta-)compile time. Meta-
variables replace object-like macros and meta-functions
replace function-like macros. Meta-variables and meta-
functions are declared and typed in a very similar way to
normal C++ variables and functions, save for the new use
of the auto keyword and the introduction of meta-types:
auto double PI = 3.14159; // Meta-variable

auto expression max(expression a, expression b)
{ // Meta-function

$a > $b ? $a : $b;
}

for use as
a = $max(sin(2*$PI*f),0.5)

The auto keyword is almost totally obsolete in C++,
where auto is only permitted within functions. auto is
reused outside of functions in FOG to declare meta-
functionality. Readers may choose to pronounce auto as
meta, throughout this paper.

The meta-types correspond to the basic kinds of token
(identifier, string and character), the numeric
types (bool, double, int and etc.) and also to
productions such as declaration and expression
from the C++ grammar [2].

Use of meta-types enables the parser to ensure that
arguments are passed and returned compatibly, and to
diagnose errors more helpfully. When appropriate,
conversions between the basic kinds are performed
automatically.

Substitution within the meta-function replaces each
invocation by its corresponding argument expression2.

The simple meta-function implementation of max
solves the parenthesis problem, works for arbitrary types
but remains prone to side effects. The invocation
$max(a++, b++)

will result in one argument receiving a double increment
just as in Cpp.

2.5 Conditional compilation
Conditional compilation is essential to support a variety of
configuration options, often to resolve distinctions between
different operating systems. It may be appropriate to define
static const char *temp_path = "/tmp/";

for use under Unix whereas NT might require
static const char *temp_path = "C:\\Temp\\";

FOG elevates C++ run-time statements such as if ...
else ... for use at the meta-level, so that the selection
may be made using an apparently conventional test:
auto if ($UNIX)
  static const char *temp_path = "/tmp/";
else
  static const char *temp_path = "C:\\Temp\\";

2 Substitution is syntax-tree-based, rather than token-based as in the ANSI C
preprocessor, or character-based as in the K&R preprocessor.
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Cpp provides line-oriented conditional directives that
mark-up rather than form part of the source text:
#if defined(UNIX)
  static const char *temp_path = "/tmp/";
#else
  static const char *temp_path = "C:\\Temp\\";
#endif

C++ statements occur only within functions. The use of the
auto prefix is therefore redundant in the above example.

2.6 Other directives

A description of the replacements for other Cpp directives
may be found in [13]. In summary, FOG provides a more
integrated form of #error, a more disciplined context for
#pragma and a form of #include that solves the
problems of multiple inclusion. #line is not replaced.

3 Object-oriented preprocessing

The facilities described above provide consistent
replacement for Cpp behaviour. Most of the extensions
could be regarded as extensions to C rather than C++.
Reviewing and generalising the facilities within the
context of C++ leads to a much more powerful
programming environment in which predictable program
structures can be coded effectively.

3.1 Scopes
Meta-variables and meta-functions may be scoped and
inherited, and meta-statements may occur within
declaration scopes.

Revisiting the conditional compilation example of
Section 2.5 from an Object-Oriented perspective, we find
no need for conditional compilation. The characteristics of
each configuration option may be packaged as meta-
variables (and meta-functions) of a (meta-)class3.
class OsTraits_Abstract
{
  auto bool NT = false; // default value
  auto bool UNIX = false;
  //...
};

class OsTraits_NT : public OsTraits_Abstract
{  // derived class
  auto bool NT = true; // overriding value
  auto string temp_path = "C:\\Temp\\";
  //...
};

class OsTraits_Unix : public OsTraits_Abstract
{
  auto bool UNIX = true;
  auto string temp_path = "/tmp/";
  //...
};

OsTraits_NT may be configured as the implementation
of OsTraits, by specifying the value of OS on the FOG
command line
fog ... -D OS=NT ...

and using the built-in meta-function
auto string std::get_cpp(string macroName)

to access it from
class OsTraits
 : public OsTraits_$std::get_cpp("OS") {};

thereby creating the equivalent declaration
class OsTraits : public OsTraits_NT {};

This maps the required configuration to OsTraits, so

3 In FOG, every class and built-in type has an identically named meta-class, so for
the purposes of this paper classes and meta-classes may be considered equivalent.

that an operating system specific file may be defined using
the temporary path by
const char *fileName =

   $OsTraits::temp_path "results.dat";

This is then resolved at compile-time to
const char *fileName = "C:\\Temp\\results.dat";

Having isolated the configuration in separate classes and
an associated header file, a new operating system can be
supported by providing a prefix file characterising the new
system and invoking it with an appropriate command line.
Existing source files need no change. This could be
achieved directly using multiple layers of name
substitutions with C preprocessor, but it never is.
Modularisation is much easier when supported by the
programming environment. This cannot be achieved using
C++ templates, which lack the ability to perform string
manipulations.

3.2 Compilation model

C++ supports a two stage translation process involving
multiple independent compilations followed by a link
editing stage to produce a final executable. The
independent compilations are consistent provided the One
Definition Rule [2 (§3.2)] is observed. Simply stated, this
rule requires that a declaration in one compilation must not
have a different meaning in any other. In practice, placing
declarations in header (interface) files, which are included
by each compilation session that requires them, usually
satisfies the One Definition Rule.

From the perspective of a compiler writer, the One
Definition Rule is very useful, if not essential. From the
perspective of the programmer, the One Definition Rule is
very inconvenient. Declarations must be provided twice,
once in the interface file and again in the implementation
file. Declarations cannot be freely interleaved. In more
serious applications, a conflict arises between language
constraints and the programmer’s need to organise code to
suit algorithmic or functional perspectives. Code has to be
organised to suit the compiler. Patterns cannot be
preserved in the code [8] and Aspect-Oriented
Programming [9] is not readily supported.

A preprocessor for C++, that performs its processing
prior to compilation, can bridge the gap between the
organisational requirements of the programmer and the
integrity requirements of the compiler. FOG operates in
this way using an augmented compilation model as shown
in Fig. 1.

The centre and right hand sides show the conventional
C++ compilation model. Interface files provide the
declarations to be shared by independent compilations,
which produce object files to be linked together with
libraries to produce an executable. (The complexities of
static construction and template instantiation are
conveniently hidden by the ‘Linker2’ activity.) Meta-
compilation adds the extra stages on the left hand side. The
conventional C++ interface and implementation files are
generated by one or more meta-compilations from source
files (the forward arrows) and from frozen interfaces (the
reverse arrows). Sources may be shared between meta-
compilations, and a single meta-compilation may generate
any number of interfaces and/or implementations.

Clearly the One Definition Rule must still be respected
by the interface and implementation files fed to the
compiler. However a more relaxed Composite Definition
Rule can now be imposed on the source files. Simply
stated, the composite meaning of all like declarations must
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be the same in each meta-compilation. The composite
meaning is explained in Section 3.4.

3.3 Joint interface and implementation
Introduction of a meta-compiler that synthesises interface
and implementation files eliminates the need for
independent interface and implementation declarations. It
is appropriate to generalise C++ declarations to remove the
distinction between interface-specific and implementation-
specific declarations. This generalisation turns out to be
almost entirely semantic, since the C++ grammar already
permits an interface-specific keyword such as virtual
to accompany a function-definition4. It is only necessary to
allow an access-specifier (e.g. protected) as part of a
decl-specifier (the type part of a declaration), and to permit
a full id-expression (e.g. Scope::name) where
previously only an identifier was allowed.

Programmers may then use an implementation style of
declaration for parts of interfaces
public typedef size_t Class::SizeType;

or provide complete implementations in interfaces:
class Class
{
  protected virtual void f(int x = 0) = 0

{ std::cout << x; }
public:
  static double y = 0;
};

A complete solution to the class_name() example
from Section 2.3 may now be captured by the single meta-
function
auto declaration ClassName()
{
  public virtual !inline

const char *class_name() const
  { return ""$Scope; }

};

which can be invoked as
class NamedClass
{
  $ClassName();
};

The reserved meta-variable Scope refers to the prevailing
scope, avoiding the need to pass it as a parameter.

4 The italicised terms correspond to productions in the C++ grammar [2].

The negated keyword !inline ensures that the
function body is not inlined. Similarly  !static would
provide for explicit rather than default programming
intent.

The single meta-function invocation generates the
equivalent C++ interface
class NamedClass
{
public:
  virtual const char *class_name() const;
};

and implementation
const char *NamedClass::class_name() const

{ return "NamedClass"; }

This requires a pair of macros when implemented using
Cpp.
#define CLASS_NAME_INTERFACE() \
  virtual const char *class_name() const;
#define CLASS_NAME_IMPLEMENTATION(CLASS) \
  const char *CLASS::class_name() const \

{ return # CLASS; }

and a corresponding pair of invocations one from the
interface
CLASS_NAME_INTERFACE()

and one from the implementation
CLASS_NAME_IMPLEMENTATION(NamedClass)

3.4 Composition

In C++, multiple declarations are an error. In FOG,
multiple compatible declarations are composed; only
incompatible declarations are an error. Space does not
permit more than a superficial exposition of the
composition rules.

Composed declarations merge their components, and so
a variable qualified with static carries the static
with it when merged with another variable that has no
static specification, but provokes an error message if
merged with a !static.

Overloaded function declarations compose
independently. Default values may be repeated but may
not conflict.

Arrays and enumerations extend to accommodate all
contributions. Duplicate initialisations must match. Holes
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Implementation

Meta-
compiler Interface

Source

Source

Interface

Implementation

Library
Interface
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compiler

Compiler

Library
Object

Object
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Linker

Linker2
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                Fig. 1 Meta-compilation model
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in arrays are zero filled. The GNU C [14] extension5 is
supported so that sparse arrays can be defined and
composed.
bool is_prime[] = { [2] true, true, [5] true,

  [7] true, [11] true };

The constructor initialisers for a particular constructor are
composed and must not conflict. Unspecified initialisers
for non-copy constructors are obtained from member
variable initialisers. For example, code to support an error
handling aspect may add a member variable with a default
initialiser:
public bool Class::_error_generated = false;

A constructor independently added in support of some
other aspect
Class::Class(PersistenceManager&) /*...*/;

provides the requisite initialisation.
Classes expand to encompass all distinct member

declarations, with repeated declarations composed
recursively.

Function (and constructor) bodies are composed by
concatenating code contributions within named regions,
which are in turn concatenated to form the overall function
body. The regions named entry and exit typically
provide for variable declaration and initialisation and a
return statement, ensuring a predictable structure. Regions
named pre and post provide code to operate before or
after the default body region of the function. Function
definitions are extended to support a declarative scope
within which regions are prefixed by their name.
public bool Manager::do_it()
:{ // Start of declarative scope
  entry { bool exitStatus = true; };
  exit { return exitStatus; };
};

defines a framework for a composed function. A return
variable is initialised in the entry region, and returned by
the exit region. With the framework in place, code
concerned with a particular aspect may contribute code to
the function:
private Aspect Manager::_aspect;

public bool Manager::do_it()
{
  if (!_aspect.do_it())

exitStatus = false;
}

FOG weaves the contributions together to produce the
equivalent C++ declarations:
class Manager
{
private:
  Aspect _aspect;
public:
  bool do_it();
};

bool Manager::do_it()
{
  bool exitStatus = true;
  if (!_aspect.do_it())

exitStatus = false;
  return exitStatus;
}

Readers who have programmed extensively with a macro
assembler may recognise that the ability to extend classes,
function code regions, enumerations and arrays at will
gives each declaration space the attributes of a program
section.

It is possible to define a meta-function that performs
extension of an enumeration and a text array so that

5 A [constant-expression] preceding an array initializer specifies the array index to
be initialized.

numeric and text declarations are automatically
synchronised.
auto declaration NamedEnum(identifier aName)
{
  public enum Enum { $aName };
  public static const char *names[] =

{ ""$aName };
}

Invocation as
class Colours
{
  $NamedEnum(RED);
  $NamedEnum(GREEN);
  $NamedEnum(BLUE);
};

provides successive entries for Colours::Enum and
corresponding entries for Colours::names[], as if the
user had typed:
class Colours
{
public:
  enum Enum { RED, GREEN, BLUE };
  static const char *names[];
};

and
const char *Colours::names[] =

{ "RED", "GREEN", "BLUE" };

The conversion of a single name such as RED into
multiple interleaved declarations cannot generally be
achieved using the preprocessor or C++ templates.

3.5 Derivation rules

There are many idioms that require entirely predictable
code to be provided by derived classes in order to comply
with a protocol defined by a base class. The
class_name() method of Section 3.3 provides one
example. In C++, a declaration applies to the scope for
which it is specified. In FOG, this scope is referred to as
the root scope for that declaration. An optional derivation
rule specifies how that declaration may be automatically
redefined in the inheritance tree of scopes that derive from
the root scope. Refining the example from Section 3.3
auto declaration ClassName()
{
  public virtual !inline
    const char *class_name() const
  :{

derived(true) { return ""@Scope; };
  };
};

A declarative scope has been introduced to prefix a
derivation rule to the function body. The predicate of
derived(true) is always true and so the declaration is
applied throughout the entire inheritance tree, that is at the
root scope and all derived scopes.

The change of substitution operator from $ to @,
changes the evaluation time. $ is an early substitution
operator, evaluated when source tokens are first parsed to
create a potential declaration in its associated root scope, at
which point Scope resolves to the root scope. @ is a late
substitution operator, evaluated when a potential
declaration becomes an actual declaration in its eventual
scope, at which point Scope resolves to the actual scope.
(If the $ operator were used in the example, all derived
scopes would return the name of the root scope.)

Derivation rules can apply to the declaration of any
entity. Michael Tiemann provided a solution [3] to the
problem of providing a mnemonic name for the primary
base class
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class foreman : public employee {
  typedef employee inherited;
  //...
  void print();
};

class manager : public foreman {
  typedef foreman inherited;
  //...
  void print();
};

enabling a derived class to refer to its base class
mnemonically as inherited rather than explicitly.
void manager::print()
{
  inherited::print();
  //...
}

In FOG, the entire hierarchy of typedefs can be
expressed by a single declaration.
private typedef @Super employee::inherited
  :{ derived(!is_root()); };

This provides a typedef for all derived classes. The
derivation predicate inhibits the declaration at the root,
where the built-in meta-variable Super may have no valid
resolution for the primary base class.

The Prototype pattern [6], virtual constructor, or cloning
idiom [15] is also provided very easily using a derivation
rule. The conventional approach requires that a clone
method be defined for every non-abstract class in an
inheritance hierarchy
class ConcreteClass /* ... */
{

/* ... */
virtual RootClass *clone() const;

};

RootClass *ConcreteClass::clone() const
{ return new ConcreteClass(*this); }

This requires the programmer to manually weave the code
in to every class. This is potentially error prone and costs
at least one line per interface and one line per
implementation file of every class. Using FOG, the idiom
can be fully defined by a meta-function:
auto declaration Prototype()
{
  public virtual $Scope *clone() const = 0
  :{

derived(!is_pure())
  { return new @{Scope}(*this); };

  };
}

The !is_pure() derivation predicate specifies that the
declaration contributes code to all derived classes that have
no pure virtual functions.

Instantiation requires a single line in the base class that
defines the protocol. No code is required in derived
classes.
class Base
{
  $Prototype();
};

($Scope may be changed to @Scope to use the derived
type as the return type.)

These two examples demonstrate FOG at its most
advantageous: one line in the base class guarantees
protocol observance and replaces one or more lines in each
derived class. A more realistic example will now be
examined.

4 A Real Example

One of the activities of a compiler involves selection of
appropriate machine instructions (such as ADD or MOVE)

to implement the program, usually represented by a tree of
Abstract Syntax Tree nodes [16]. An effective approach to
solving this problem involves a Bottom-Up Rewrite
System [17], which searches the tree from the leaves
upwards identifying the lowest cost solution that has each
node covered exactly once by a machine instruction. The
tree may then be rewritten in terms of the selected machine
instructions. In order to support multiple target
architectures, alternative instruction sets must be
supported. Implementation of this diversity is assisted by
the use of a Bottom-Up Rewrite Generator to transform a
description of each machine instruction into the form
needed for an efficient tree search. An example of this
form of generator is lburg that forms part of the lcc C
compiler [18].

lburg is a compact C program comprising just three
files. lburg.c has 690 lines and 4652 (non-comment, non-
whitespace preprocessor) tokens. lburg.h has 66 lines and
259 tokens. Additionally gram.y is a 19 rule, 37 state yacc
parser grammar.

lburg supports single dispatch architectures (such as
SPARC). An enhanced version was required in order to
support less conventional processor architectures, and so a
highly Object Oriented C++ rewrite was undertaken using
reference counting and smart pointers to share common
partial instructions. The resulting program was
substantially larger, due to the extra declarations for
encapsulated C++ classes, rather than the original free
access to structure elements, and due to the added
functionality. Preprocessor macros were used extensively
to factor out common declarations.

A further revision to exploit FOG without any other
change of functionality forms the basis of the following
comparison. An implementation based on the use of
preprocessor macros is compared with an implementation
using meta-functions, meta-variables and derivation rules.

Use of FOG reduced the token count by 14%, from
20250 to 17500. The per-class reduction varied between 9
and 48%. The larger reductions occurred in small classes,
where the benefits of derivation rules and simplification of
interface and implementation declarations were most
apparent.

A reduction in token count is an easily measured
reduction in programming effort. Less easily measured are
the more aesthetic improvements of better modularity,
improved expression of programming intent, and
automatic compliance with programming protocols. A pair
of short before/after extracts are provided in the Appendix
for readers to make their own judgements. The code is
complete save for the removal of 4 functions whose lexical
structure exactly duplicates functions that remain. Code for
this example is chosen because it is shortest, and so
demonstrates the changes more clearly. Providing the large
number of unaffected function body lines from a more
typical module would not provide extra insight. Space does
not permit the definitions of the preprocessor macros or
meta-functions to be shown. The two are of comparable
lexical size, the meta-function has a higher token count
through the use of $ operators and meta-type names, but a
lower token count through the use of more appropriate
facilities. The meta-functions are modular, having fewer
interdependencies than the preprocessor macros, and more
readable through the use of more conventional structuring
and the elimination of back-slash continuation lines.

The original preprocessor macros almost vanish
completely. The CUSTOM_RTTI support is provided
automatically by derivation. The remaining six macros
supporting smart pointers are all subsumed by
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MapOfSmartPointerSpecialisations. Other
meta-functions such as Mutate just implement simple
idioms.

5 Related Work

Although extensively criticised [3], relatively little work
has been published on alternatives to the C preprocessor
[1]. Weise [19] provides a review of earlier work, and
describes the use of a syntactic macro, which has fully-
typed argument and return values. Invocation of the macro
occurs within the context of a parse tree, so there is no
opportunity for the unpleasant side effects that occur with
conventional macros that lack sufficient parentheses. The
usage of fully meta-typed arguments for meta-functions in
FOG is influenced by Weise, however the FOG notation is
more compact and supports both character- and syntax-
based replacement. Weise introduces nine extra lexical
operators, requires an explicit return, and produces
examples that are unpleasant and sometimes difficult to
read. FOG introduces only two extra lexical operators ($
and @) and by treating the entire meta-function body as the
return achieves a simpler substitution model. Weise
considers only ANSI C, whereas FOG revisits the concepts
with an Object-Oriented and meta-level perspective.

Researchers in many fields have chosen to use C++, but
found it inadequate for their purposes. There are therefore
many domain specific extensions to C++, just some of
which are discussed below.

A low level understanding of object layout is necessary
for persistent storage of objects in databases or for
marshalling objects, whether for signalling between nodes
in a communication network, or distribution across nodes
in a parallel processor. Wilson and Lu [20] provides
extended articles by 16 of the leading research teams using
C++ for parallel processing. Some researchers used only
library classes and run-time support code, and so remain
entirely within the normal confines of the C++ language.
Others introduce language extensions, which are variously
implemented as translators to C++, or modified C++
compilers. MPC++ [21] exploits meta-level facilities to
support an extended syntax within a ‘standard’ C++
compiler. Many of the C++ extensions appear unnecessary
and some authors recognise that more imaginative use of
C++ facilities, particularly those not readily available at
the start of their research could have reduced the need for
divergence.

Domain specific extensions, when fully integrated with
C++, can provide a clean solution to the domain problem.
Many extensions are poorly integrated because of the size
and complexity of C++ and so provide little more than a
research tool. Many of the problems dealt with in a domain
specific fashion can be resolved in a domain independent
fashion by using the meta-level programming facilities of
FOG. However FOG meta-programming is restricted to
declarations and so the more radical changes of C** [22]
in which data parallel semantics are introduced to
expressions could certainly not be addressed.

The concepts of meta-classes were first defined for
Smalltalk. Languages such as CLOS have been extended
with a Meta-Object Protocol (MOP) [23]. Even Java has a
meta-class object for every class. C++ has rather lagged
behind, perhaps through a mismatch of the run-time
characteristics of traditional MOPs and the statically
compiled philosophy of C++, perhaps through the
compiler writer’s desire to prevent further explosion of
language complexity. FOG provides statically compiled
meta-functionality, which can be used to define

customised run-time meta-functionality. It is difficult to
answer the critique that C++ is too large, and that adding
meta-functionality is an enhancement too far. However it
is also difficult to avoid recognising that the absence of
meta-functionality is restrictive for some domains and an
inhibition to reuse for all.

C++ has no compile-time meta-level capabilities. Chiba
[24] describes an extended form of C++ called Open C++,
that allows library developers to write code to analyse
class layout and so ensure that persistence can be resolved
transparently. Meta-classes are used as adjuncts of the
normal C++ class structures, with a wide variety of
reserved meta-functions available for re-implementation to
enable the parse tree to be adjusted during the compilation
process. This provides considerable power, but because
Open C++ programming is very closely related to the
compiler internals, this approach is not suitable for normal
programming. FOG also uses meta-classes, but every C++
class or built-in type is a FOG meta-class, and the meta-
code creates declarations by using declaration statements
directly, with the result that the facilities available at the
meta-level in FOG are very similar in syntax and
behaviour to those already available in C++. FOG is not
able to rewrite expressions in the same way that Open C++
does, but there may be no need to. Relevant expression
terms can be encapsulated within inline functions and
templates, which FOG provides the ability to manipulate at
compile-time.

The use of patterns has provoked considerable interest
since the original patterns book [6], although most
attempts to represent patterns in code are informal. Soukup
addresses the problems of implementing patterns in [8].

Aspect-Oriented Programming [9] has recognised that
an aspect may cut across many objects, requiring the
contributions to each class from each aspect to be woven
together.

Generative Programming [25] seeks to configure re-
usable components, making extensive use of C++
templates to perform the compile-time configuration. This
approach works well for components that can be fully
defined by a single type or function. FOG complements
the template approach by providing a compile-time
flexibility to configure multiple declarations as well as
single types or functions.

6 Other languages

This paper has concentrated on C++, where meta-level
facilities are very limited and preprocessing is more
extensively used than in other languages. In C++, an
efficient program is produced at compile-time avoiding the
need for run-time activities. Preprocessing contributes to
resolving problems at compile-time. The compile-time
processing available from static meta-programming is
compatible with the C++ philosophy. It is less relevant and
probably unwelcome for languages such as Smalltalk or
CLOS that have a tradition of run-time flexibility.

Java has its origins in C++, and also seeks to resolve
problems at compile-time although run-time performance
is less critical. The absence of a preprocessor in Java
eliminates one of the programmer’s options. The lexical
and meta-level concepts in this paper could certainly be
applied to Java, where the cleaner syntax and existing
meta-classes could be exploited.

Significant revision of the syntax is necessary to make
the concepts compatible with languages such as Ada 95 or
Eiffel, for which some form of meta-level programming
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would be beneficial, although a cryptic C/C++ lexical style
would be out of place.

7 Performance

FOG is available as source, NT and Solaris binaries from
[26]

The current implementation of FOG is at the level of a
research tool and so the efficiency falls well below that of
a production compiler.

The potential efficiency depends on the way in which
the meta-compiler is used. If used to meta-compile on a
class by class basis, the need to understand the context of
declarations may incur a significant penalty, similar to the
costs of instantiating templates one at a time without
precompiled headers. If used on a subsystem by subsystem
basis, the costs are amortised and can be similar to those of
a conventional compiler.

A meta-compiler operating as an independent
preprocessor duplicates much of the parsing and semantic
analysis of the subsequent compiler. Using an appropriate
intermediate representation to communicate between meta-
compilation and compilation can reduce the meta-
compilation overhead.

8 Conclusion

A meta-compiler has been described that makes the C
preprocessor redundant

• concatenation and substitution replace # and ##
• meta-variables and meta-functions replace object-like
and function-like macros
• meta-statements replace #if

The meta-compiler extends C++ but preserves its essential
characteristics

• costs are incurred only at compile-time
• syntax-based substitution respects program structure
• meta-types define meaning and support error diagnosis
• meta-classes define the scope of meta-variables and
meta-functions
• meta-statements support meta-programming at compile-
time
• derivation rules support and enforce inheritance
hierarchy protocols

Although each extension is not new to computer science, it
is their combination that provides the unique ability to
avoid repetition in practical examples such as cloning.

Finally the composition of declarations frees the
programmer from the constraints imposed by the One
Definition Rule, providing the flexibility to encapsulate
solutions to patterns as meta-functions and to weave
together the declarations from each separate concern of an
Aspect Oriented Program.
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11 Appendix

11.1   Original interface file

#ifndef ENTRY_HXX
#define ENTRY_HXX
#include <Burg.h>
#include <Id.hxx> // A smart string class
#include <Object.hxx>
#include <ReferenceCount.hxx>
#include <SmartPointer.H>

class Entry : public Object
{
  CUSTOM_RTTI_DECLARATION(Entry, Object)
  REFERENCE_COUNT_DECLARATION(Entry)
  NULL_OBJECT_DECLARATION(Entry)
private:
  const Burg& _burg;
  const IdHandle _id; // Handle for a smart string
private:
  Entry(const Entry&);     // No copy
  Entry& operator=(const Entry&);  // No assign
protected:
  Entry();
  Entry(Burg& aBurg, const Id& anId);
public:
  const Burg& burg() const { return _burg; }
  const Id& id() const { return *_id; }
  virtual Term *is_term();
  const Term *is_term() const { return ((Entry *)this)->is_term(); }
  virtual void mark_reachable();
  virtual ostream& print_this(ostream& s) const;
};
#endif

11.2   Original implementation file

#include <Entry.hxx>
#include <Burg.hxx>
#include <MapOfSmartPointer.H>

CUSTOM_RTTI_IMPLEMENTATION(Entry, Object)
REFERENCE_COUNT_IMPLEMENTATION(Entry)
NULL_OBJECT_IMPLEMENTATION(Entry)
SMART_POINTER_IMPLEMENTATION(Entry)
MAP_OF_SMART_POINTER_IMPLEMENTATION(Entry)

Entry::Entry() : _burg(Burg::null_object()) {}

Entry::Entry(Burg& aBurg, const Id& anId) : _burg(aBurg), _id(anId) { aBurg.add_entry(*this); }

Term *Entry::is_term() { return 0; }
void Entry::mark_reachable() {}
ostream& Entry::print_this(ostream& s) const { return s << _id; }

11.3 Revised FOG code, with use of FOG extensions italicised

using "Burg.fog"; // Improved form of #include.

class Entry : public Object
{
  using/interface "Burg.h"; // Need a #include <Burg.h>
  $NoCopy(); // Entry(const Entry&);
  $NoAssign(); // Entry& operator= (const Entry&)
  $Mutate();  // Entry& mutate() const { return *(Entry *)this; }
private:
  const Burg& _burg = Burg::null_object();
  const IdHandle _id;

protected:
  !inline Entry() {} // Uses default initialiser value

public:
  const Burg& burg() const { return _burg; }
  const Id& id() const { return *_id; }
  virtual Term *is_term() { return 0; }
  const Term *is_term() const { return mutate().is_term(); }
  virtual void mark_reachable() {}
  virtual ostream& print_this(ostream& s) const { return s << _id; }

};

$MapOfSmartPointerSpecialisations(Entry);

protected Entry::Entry(Burg& aBurg, const Id& anId) : _burg(aBurg), _id(anId)
{ aBurg.add_entry(*this); }


